Арифметическая кунсткамера
В мире чисел, как и в мире живых существ, встречаются подлинные диковинки, редкие экземпляры, обладающие исключительными свойствами. Из таких необыкновенных чисел можно было бы составить своего рода музей числовых редкостей, настоящую «арифметическую кунсткамеру». В ее витринах нашли бы себе место не только числовые исполины, о которых мы побеседуем еще в особой главе, но и числа сравнительно небольшие, зато выделяющиеся из ряда других какими-либо необычайными свойствами. Некоторые из них уже по внешности привлекают к себе внимание; другие открывают свои диковинные особенности лишь при более близком знакомстве.
Приглашаю читателя пройтись со мною по галерее таких числовых диковинок и познакомиться с некоторыми из них.
Пройдем, не останавливаясь, мимо первых витрин, заключающих числа, свойства которых нам уже знакомы. Мы знаем уже, почему попало в галерею диковинок число 2: не потому, что оно первое четное число, а потому, что оно - основание самой удобной системы счисления (см. стр. 191).
Не удивимся мы, встретив тут 5 - одно из наших любимейших чисел, играющее важную роль при всяких «округлениях», в том числе и при округлении цен, которое обходится нам так дорого (см. стр. 154). Не будет неожиданностью для нас найти здесь и число 9, - конечно, не как «символ постоянства»[64], а как число, облегчающее нам поверку всех арифметических действий (см. стр. 174). Но вот витрина, за стеклом которой мы видим -
Число 12
Чем оно замечательно? Конечно, это число месяцев в году и число единиц в дюжине. Но что, в сущности, особенного в дюжине? Немногим известно, что 12 - старинный и едва не победивший соперник числа 10 в борьбе за почетный пост основания системы счисления. Культурнейший народ древнего Востока - вавилоняне и их предшественники, еще более древние жители Двуречья - вели счет в 12-ричной системе счисления. И если бы не пересилившее влияние Индии, подарившей нам 10-тичную систему, мы, весьма вероятно, унаследовали бы от Вавилона 12-ричную систему. Кое в чем мы и до сих пор платим дань этой системе, несмотря на победу 10-тичной. Наше пристрастие к дюжинам и гроссам, наше деление суток на две дюжины часов, деление часа - на 5 дюжин минут, деление минуты - на столько же секунд, деление круга на 30 дюжин градусов, наконец, деление фута на 12 дюймов - разве не свидетельствует все это о том, как велико еще влияние этой древней системы?
Хорошо ли, что в борьбе между дюжиной и десяткой победила последняя? Конечно, сильными союзницами десятки были и остаются наши собственные руки с десятью пальцами, - живые счетные машины. Но если бы не это, то следовало бы безусловно отдать предпочтение 12-ти перед 10. Гораздо удобнее производить расчеты по 12-ричной системе, нежели по 10-тичной. Причина та, что число 10 делится без остатка только на 2 и на 5, между тем как 12 делится и на 2, и на 3, и на 4, и на 6. У 10 всего два делителя, у 12 - четыре. Преимущества 12-ричной системы станут вам яснее, если вы примете в соображение, что в 12-ричной системе число, оканчивающееся нулем, кратно и 2, и 3, и 4, и 6; подумайте, как удобно дробить число, когда и 1/2, и 1/3, и 1 1/4 и 1/6 его должны быть целыми числами! А если выраженное в 12-ричной системе число оканчивается двумя нулями, то оно должно делиться без остатка на 144, а следовательно, и на все множители 144-х, т. е. на следующий длинный ряд чисел: