Синусоиды складываются, как мы видим на схеме ниже.
Представление с помощью ряда Фурье прямоугольной волны: вверху ее компоненты, синусоиды, внизу – их сумма
Хотя волна прямоугольной формы разрывная, каждое ее приближение будет непрерывно. Но по мере добавления всё больших членов ряда колебания растут, делая график рядов Фурье всё более крутым около точек разрыва. Здесь мы видим, как бесконечный ряд непрерывных функций может превратиться в разрывную функцию.
Причина такого различия в том, что в волновом уравнении энергия сохраняется, и поэтому колебание не затухает. А в уравнении теплопроводности тепло распространяется по всему стержню и теряется на его концах, потому что они охлаждаются.
Результатом работы Фурье стало то, что мы можем разложить начальное распределение температуры в ряд Фурье – сумму синусов и косинусов, похожую на приведенную выше формулу, а значит, способны немедленно описать, как тепло распространяется по телу со временем. Фурье считал очевидным, что такое выражение можно составить для любого начального распределения температуры, – и здесь-то начинались его неприятности. Мало кому из современников ученого было интересно, какое отношение теплопроводность имеет к волнам. Ее изучение казалось гораздо более сложным занятием.
Доводы Фурье в пользу возможности разложить функцию на синусы и косинусы были слишком сложными, запутанными и недостаточно строгими. Ему пришлось воспользоваться всеми разделами математики, чтобы в конце концов получить простые выражения для коэффициентов b1, b2, b3 и т. д. Обозначив начальное распределение температуры как f(x), он получил:
В 1777 г. Эйлер уже вывел эту формулу во время работы над волновым уравнением для звука и доказал ее с помощью мудрого наблюдения, заметив, что разные моды, sin mπx и sin nπx, являются ортогональными, т. е.
равен 0, если m и n – разные целые числа, не равные 0, т. е. на самом деле равен π/2, если m = n. Если предположить, что f(x) можно разложить в ряд Фурье, то, умножив обе стороны выражения на sin nx и проинтегрировав, мы избавимся от всех слагаемых, кроме одного, и в остатке получим формулу Фурье для bn.
Гидродинамика
Ни одно обсуждение ДУЧП в математической физике не будет полным без упоминания гидродинамики. И правда, эта область очень важна для практического применения, поскольку уравнения описывают, как вода обтекает подводные лодки или воздух – воздушные суда, и даже показывают сопротивление воздуха во время гонок «Формулы-1».
Эйлер сделал первые шаги в этой области в 1757 г., выведя ДУЧП для движения жидкости с нулевой вязкостью («липкостью»). Это уравнение остается в силе для некоторых жидкостей, но из-за излишней упрощенности не очень практично. Уравнения для вязких жидкостей вывел в 1821 г. Клод Навье, а потом их получил в 1829 г. Пуассон. Уравнения включают различные частные производные скорости движения жидкости. В 1845 г. Джордж Стокс вывел те же уравнения исходя из базовых физических принципов, и в итоге они получили название уравнения Навье – Стокса.