9w = 9,00000…
и получим w = 1.
А вот доказательство, для которого алгебра вообще не нужна. Надеюсь, вы согласны с тем, что два числа могут считаться разными, если между ними расположено третье число, не равное ни первому, ни второму (например, их среднее арифметическое)? Пойдем от обратного: предположим, что 0,99999… и 1 суть разные величины. Какое же тогда число будет между ними? А если такого числа нет, значит, мы не можем утверждать, что они разные.
Два числа или две бесконечные суммы считаются равными в том случае, если они сколь угодно близки друг к другу, то есть разница между ними меньше любой положительной величины, будь то 0,1 или 0,0000001, или 1, деленное на триллион. Разница между 1 и 0,99999… – наглядный тому пример, и именно это дает математикам право утверждать, что 1 и 0,99999… суть одно и то же число.
Следуя той же логике, мы можем оценить бесконечную сумму следующего ряда:
А еще мы можем найти ей физическое соответствие. Представьте, что вы стоите в двух метрах от кирпичной стены. Вы делаете шаг вперед – ровно на метр. Следующий шаг будет вполовину короче – полметра. Потом четверть метра, одна восьмая метра и так далее. С каждым шагом расстояние между вами и стеной сокращается ровно вполовину. Если проигнорировать физические ограничения на длину каждого следующего шага (в том числе и длину ваших ступней), то рано или поздно вы подберетесь вплотную к стене. Всего же вы пройдете ровно 2 метра.
То же можно представить и геометрически. Начнем с прямоугольника с длинами сторон 1 и 2 и площадью 2. Разделим его пополам, потом еще раз и еще – и так до бесконечности. Площадь первого сектора будет равна 1, второго – 1/2, третьего – 1/4 и так далее. Даже когда мы будем делить на n, стремящееся к бесконечности, мы не выйдем за пределы начального прямоугольника, а площади всех его секторов в сумме будут по-прежнему равны 2.
Алгебра позволяет нам подойти к решению задачи с точки зрения частичных, промежуточных сумм:
Эта закономерность подсказывает нам, что при n ≥ 0
Доказать это можно либо с помощью метода индукции (см. главу 6), либо как частный случай формулы конечного геометрического ряда.
Теорема (конечный геометрический ряд): При x ≠ 1 и n ≥ 0
Доказательство 1 (метод индукции): При n = 0 формула говорит нам, что что, конечно же, верно. Предположим теперь, что n = k, то есть наша формула превращается в
Она отлично работает и при n = k + 1, поэтому, добавив к обеим сторонам xk+1, мы получим